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Special points in the reciprocal space of an icosahedral 
quasi-crystal and the quasi-dispersion relation of 
electrons 

K Niizeki and T Akamatsu 
Department of Physics, Tohoku University, Sendai 980, Japan 

Received 6 March 1989 

Abstract. It is shown that there exist special points in the reciprocal space of an icosahedral 
quasi-lattice; they correspond to high-symmetry points in the Brillouin zone of a periodic 
lattice. The translationally equivalent special points are distributed quasi-periodically with 
different intensities in the reciprocal space. On the other hand, electronic wavefunctions of 
the icosahedral quasi-lattice are investigated using a numerical method based on the tight- 
binding model. Their Fourier spectra are mapped in the energy versus wavenumber plane 
along several axes in reciprocal space. Dispersion-relation-like patterns are observed. It is 
found that critical points (stationary points) of the quasi-dispersion relation appear at the 
special points. The quasi-dispersion relation recurs quasi-periodically all over reciprocal 
space. 

1. Introduction 

A quasi-crystal is a novel kind of matter with quasi-periodic positional long-range order 
together with non-crystallographic point symmetry (see Schechtman etal (1984), Levine 
and Steinhardt (1986) and, for a review, Henley (1987)). Most familiar quasi-crystals 
are icosahedral. Since the structure of a quasi-crystal is not periodic but quasi-periodic, 
electronic states in it will be very different from those in a (periodic) crystal or an 
amorphous system. 

An idealised model of the structure of a quasi-crystal is a quasi-lattice; an icosahedral 
quasi-lattice (IQL) is constructed by the cut-and-project method from a six-dimensional 
(6D) periodic lattice (Elser 1986, Katz and Duneau 1986). The Fibonacci lattice is a ID 
analogue of the IQL; the former is similar to an array of lattice planes along a twofold 
axis of the latter. Electronic states on the Fibonacci lattice have been studied extensively 
by many authors (for a review, see Kohmoto (1987)). These investigations revealed that 
the energy spectrum is of the Cantor type and the wavefunctions are critical with respect 
to localisation, i.e. they are not extended nor localised exponentially. 

The Penrose lattice is a 2~ analogue of the IQL. Several analytical or numerical 
investigations of electronic states on the lattice have been reported. It has been con- 
jectured that the energy spectrum is singular continuous (but not of Cantor type) and 
the wavefunctions are critical (Tsunetsugu etal 1986). Also, novel states called ‘confined 
states’ are found (Semba 1985, Kohmoto and Sutherland 1986); a confined state is a 
special localised state that is strictly confined to a region of a particular local structure. 
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Since a quasi-lattice has definite reciprocal-lattice vectors that are discrete, it will be 
important to investigate the electronic wavefunctions on it in reciprocal space (the 
wavenumber space). We have previously performed such an investigation on the Fibon- 
acci lattice (Akamatsu and Niizeki 1987). We found that a dispersion-relation-like 
pattern is clearly observed in the energy versus wavenumber plane. We have recently 
performed similar investigations for the case of the Penrose lattice and the IQL, and 
obtained similar results. In this paper, we will report the results for the case of the IQL. 

We will review in section 2 the real-space properties of the IQL and in section 3 the 
reciprocal-space properties. We present in section 3, also, an exact definition of the 
special points and discuss their properties. In section 4,  we investigate the structure 
factor and its generalised versions. In section 5 ,  we investigate plane-wave states (the 
Bloch sums) and similar states. We treat in section 6 the electronic states of the IQL with 
the quasi-crystalline approximation. In section 7 we report the results of the numerical 
investigation of the reciprocal-space properties of the wavefunctions. In the final section, 
section 8, we summarise the results of this paper. We also discuss related subjects. 

2. The icosahedral quasi-lattice 

An icosahedron has 6,lO and 15 axes of five-, three- and twofold rotational symmetry, 
respectively. They are directed along the vertices, the face centres and the midpoints of 
the edges, respectively. The order of the icosahedral group, Y,, is 120, i.e. lY,/ = 120. 

An IQL, Li (= Li,p), is constructed via the cut-and-project method from a 6~ simple 
hypercubic lattice, L6-p (Elser 1986, Katz and Duneau 1986). A 3D subspace (the real 
space), E,, of the 6D Euclidean space, E6, embedding L6,p is chosen so that the six basis 
vectors E ~ ,  i = 1-6, of L6.p are projected onto ai,  i = 1-6, six of the 12 vertex vectors of 
an icosahedron in E3. A window Wof a rhombic triacontahedron is taken in the conjugate 
space, E,, which is another subspace orthogonal to E3. A strip in E6 is defined by 
thickening E, with W .  Then, Li is given by the projections onto E3 of all the lattice points 
of L6,p included in the strip. 

LetR E L,.Then,itisindexedwithsixintegersasR = nlal + . . . + n6a6 = [n, . . . n6]. 
The common length of the basis vectors is denoted by a. For all R = [nl . . . n6] E Li, 
there exists a unique companion R = nlul + . . . + n6h6 in E, such that the 6~ vector 
( R ,  R )  = n le l  + . . . n6&6 belongs to L6,p where ei = (ai ,  ui>, i = 1-6, with * ej = 2a26i,j 
are the basis vectors of Li,p. R is called the conjugate vector toR.  By definition, R E W .  

All the nearest-neighbour bonds of L6.p form a 6D network, which gives rise to a 3~ 
network of bonds in Li. Two sites connected by a bond in Li are called an arithmetic 
neighbour pair, but they are not necessarily a geometrical nearest-neighbour pair. The 
coordination numbers of the sites in the network range from 4 to 12; the average is 6. 
Moreover, the network as well as the original 6~ network contain only even-membered 
rings and give rise to a partition of E3 into two types of rhombohedra. Thus, Li has many 
common features to those of the simple cubic lattice in 3 ~ .  

L6,p is divided into two 6D face-centred hypercubic lattices L6,F and Lk,F, which are 
translationally equivalent: LL,F = el + L6.F. The two sublattices are distinguished by the 
parity of the sum of the indices n1 + . . . + n6. Correspondingly, Li is divided into two 
sublattices, 
respectively. Li,F (or LI,F) is an icosahedral quasi-lattice belonging to a different Bravais 
class from that of Li = Li,p (Rokhsar et a1 1987). The network associated with Li has 
bonds only between the sites in Li,F and those in LI,F. 

and L/,F, which are just the projections of the cuts of L6,F and Lk,F, 
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The set of lattice vectors, L6.I = {nlel  + . . . + n6E6/ n, being all even or all odd} is a 
6~ body-centred hypercubic lattice. It is one of the 32 translationally equivalent sublat- 
tices into which L6,p is divided. L6.I gives rise to another icosahedral quasi-lattice 
(C Li.p), which belongs to the third Bravais class (Rokhsar et a1 1987). 

3. The reciprocal lattice and special points of the icosahedral quasi-lattice 

The reciprocal lattice, L: (= L:,p), of L6 is another simple hypercubic lattice whose 
basis vectors are given by E 7 = m , / a 2 .  L: is embedded in the 6D reciprocal space E; . 
E: is divided into two 3~ spaces, E: = E: @ E;, so that the projections of E :  onto 
E,* (or E:) coincide with U,* = nul/a2 (or U: = nU,/a2),  i = 1-6. It follows that 
E :  = ( U ; ,  U T ) ,  i = 1-6. We shall denote the relevant projection operators by JG and 5, 
respectively. 

The reciprocal lattice of L, is defined by L,Tp = n(Ld)  and its conjugate by 
L,Tp = 5(L:). LetG E L,Tp andG E L-ITp beaconjugatepairofreciprocal-latticevectors. 
Then,theyareindexedwithsixintegersasG = mlaT + . . . + m 6 4  = (m, . . . m6)and 
G = mid; + . . . + m6U:. L,Tp and L,Tp are countable but dense sets in E: and E:, 
respectively. Note that aL,Tp (= { a G / G  E L,Tp}) = L,Tp for all 0 E Yh. We shall denote 
the 6~ reciprocal-lattice vector (G, 6 )  = m , ~ ?  + . . . + m6cg* E L;,p by the symbol 

In the reciprocal space of the usual periodic lattice, there exist special points 
(wavevectors) whose symmetries are larger than those of neighbouring points. We shall 
extend the definitions of special points to the case of a quasi-lattice. The point symmetry 
group of a wavevector kin the reciprocal space of an IQL is defined by %(k) = {a\  0 E Yh 
and ak = k mod LITp}. %(k) is a subgroup of Yh. We shall call a wavevector ko a special 
point (wavevector) if %(ko) has no fixed planes nor fixed lines but a fixed point only. For 
example, CJV (C Yh) has a fixed line, while D5d (C Yh) has only a fixed point. 

By definition, %(ko) = %(ko + G) for al! G E L,Tp, so that translationally equivalent 
special points are distributed densely in the reciprocal space. Such a set of special points 
is denoted by L,Tp(ko) (= k o  + L,Tp) with ko being a representative. 

Let ko be a special point. Then, the star of ko is the set of wavevectors. Y ( k o ) ,  
formed by translationally inequivalent wavevectors among {ako I a E Yh}. It follows that 

It can be shown easily that there exists eight types of special points. We denote them 
as r, R,  X5, M5, X3, M3, X2 and M2, representative wavevectors of which are given with 
h = i by (000000), (hhhhhh), (hOOOOO), (Ohhhhh), (hhhOOO), (OOOhhh), (hh0000) and 
(OOhhhh), respectively. Then %(ko) = Yh and 1 Y ( k o )  1 = 1 for and R points. For other 
types of special points, %(ko) is isomorphic with D5d, D3d or D,, and 1 Y ( k o )  1 = 6 ,  10 and 
15 according as the suffix is 5 , 3  or 2 ,  respectively. 

Aspecialpoint k,, = (h ,  . . . h6) is the projection of (h ,  . . . h&D E E$ onto E:. The 
6~ vector is nothing but a special point of the 6~ periodic lattice, L; . Here, a special 
point in E: should be defined in terms of the point group Yh = n-'(Yh), which is a 
subgroup of S2(6), the full point symmetry group of the 6D simple hypercubic lattice, 
L: . If special points of Lf,p are defined with respect to S2(6)t, X3 and M3 should not be 
distinguished from each other. 

(ml .  . . md6D. 

1 y ( k O )  1 = 1 2 0 / I % ( k O )  I ( 1  Yh 1 = I 2 O ) .  

t The enumeration of special points in this case is simpler than in the case of the point group Yi. The 
special points in the latter case are sought from those in the former case. 
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The R points are the projections of Lz’ = (l l l l l l) , , /2 + Lg . L$ and Lz’ form 
L&, the 6~ body-centred hypercubic lattice, which is the reciprocal lattice of L,,,, i.e. 
one of the two sublattices of L6. 

All the special points in E: form another simple hypercubic lattice, L; /2, whose 
lattice constant is half that of Lz . It follows that a necessary and sufficient condition for 
k E ET to be a special point is that 2k E LT . Let G E L; and let A be the number of odd 
integers in the indices of G. Then, to which type the special point ko = G/2 belongs is 
almost determined by A; A represents the number of half-integers in the indices of k,. 
Note that IY(k,)l = ( f ; ) ,  the binomial coefficient, unless il = 3. We shall call A the level 
of k ,  and denote it as A(k,). 

The definition of special point can be extended to that of special line (direction) or 
special plane. However, we shall not pursue it any further. We present only a few 
compatibility conditions: a special point k,  can be located on an n-fold axis in E; with 
n = 2, 3 or 5 if and only if %(k,) includes the relevant n-fold rotation and, similarly, it 
can be located on a mirror plane if %(k,) includes the mirror. 

4. The structure factor and its generalisations 

Let k ,  = (h ,  . . . h6) be a special point. Then, the plane wave in E; with wavevector 
(k , ,  k,) = (h ,  . . . h&D has phase factor exp[2ni(hln, + . . . + h6n6)] at the lattice point 
[nl . . . n6]6D E Lz . The phase factor takes value 1 or - 1 depending on the indices of the 
lattice point because hi are integers and/or half-integers. Alternatively, the phase factor 
can be regarded as a function of R = [n,  . . . n6] E Li, which we shall denote as q(k,;  R )  
or, more simply, as qr (R)  or q R ( R )  if k ,  is a point or R point, respectively. 

Let us introduce a generalised structure factor by 

where N is the total number of lattice sites and Q E E; the momentum transfer (in units 
of h). Then qr(R) takes value 1 for allR E L, and Sr(Q) ( =S(ko; Q) with ko= 0) is reduced 
to the usual structure factor S(Q). Structure factor S(Q) can be easily calculated with the 
projection method (Katz and Duneau 1986, Elser 1986, Zia and Dallas 1985). Using a 
similar procedure, we can show that 

S(k , ;  Q) = X l(k)d(Q - k )  = 1C Z(ko + G)S(Q - ko - G )  (2) 

where the intensity function is given in terms of the form factor (the Fourier transform) of 
thewindowfunction@(q) (@(O) = 1) byZ(k) = l@(k)12. Here I@(i)1*isamonotonically 
decreasing function of 0 < 161 6 1/1 WI with I Wl being the diameter of W ,  but an oscil- 
latory function in lki b 1/1 Wl whose envelope decreases rapidly as = const./lkl-6. Also 
Z(k) ( k  E L,* ( k , ) )  tends to 1 ask tends to 0 or, in other words, the special point (k, 6)  in 
E; comes near to E;. 

k E  L,*(ku) GEL: 

The structure factor is given by equation (2) with k ,  = 0: 

S(Q) = Z(G)a(Q - G > .  (3) 
GEL: 

S(ko;  Q) is virtually translationally congruent with S ( Q )  because S(ko;  Q) = S(Q - k ) ,  
for there is a k E L,* (k,) such that k = 0. 
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Figure 1. The structure factor of the IQL along a 
mirror plane perpendicular to a twofold axis in 
the reciprocal space. In the plane, two twofold 
axes are included; one of them is horizontal and 
the other vertical. Also, one threefold axis and 
one fivefold axis are included. The area of a spot 
(full circle) is proportional to the intensity. A 
spot with an intensity lower than 0.01 is ignored. 
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Figure 2. The generalised structure factor, S,(Q),  
along the same plane as in figure 1. Only the first 
quadrant is shown. The intensities are repre- 
sented by (open) circles with appropriate areas. 
The structure factor S(Q) represented by spots 
(full circles) is superimposed. If circles and spots 
are not distinguished, the resulting pattern rep- 
resents the structure factor of LI,F. A broken line 
is drawn for later use. 

0 0 

The point symmetry of S(ko;  Q) as a function of Q is given by %(k, ) .  Therefore, &(e) 
and SR(Q) have Yh, the full icosahedral symmetry, as their point symmetry. In the case 
where the type, T, of ko is different from and R, it is convenient to introduce the 
symmetrised version: 

which has the full icosahedral symmetry. 
We show S(Q) in figure 1 along a mirror plane that is perpendicular to a two-fold axis 

in E t .  On evaluating the intensities, we have approximated W, the rhombic tria- 
contahedron, by a sphere with the same volume. A reciprocal-lattice vector with a 
strong or medium intensity satisfies (61 S l/Wl. Since the intensity function vanishes 
rapidly as Ii/ is increased beyond l/lWl, S(Q) is virtually discrete notwithstanding that 
LT is dense. S(Q) is a quasi-periodic function in ET , which is contrasted with the case 
of a periodic Bravais lattice, where it is periodic. 

Figure 1 is considered to represent a weighted distribution of the r points in the 
reciprocal space. A remarkable feature of figure 1 in comparison with the case of a 
periodic lattice is that r points with partial intensities are present and, strictly speaking, 
only the r point at the origin has the full intensity. 

The weighted distributions of other types of special points are given by the 
generalised structure factors; this is a generalisation of the case of a periodic Bravais 
lattice. We show SR(Q) in figure 2 ,  together with S(Q) superimposed. &(e) has 
intensities on the threefold and fivefold axes but not on the twofold ones. It can be shown 
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Figure 3. The symmetrised generalised structure factors for X2 (a )  and M2 ( b )  along the 
same plane as in figure 1 (circles). The structure factor S ( Q )  is superimposed (spots). 
Three of the 15 translationally inequivalent sets of X2- (or M2-) type special points are 
located on the plane in (a )  (or (b ) ) .  Several r points on the horizontal twofold axis are 
indicated in (a) by symbols A-D for later use. 

that the contributions of the two sublattices L;,F and L/,F to S(Q)  at Q = kare in phase if 
k E Lzp but in anti-phase if k E L,Tp(ko) with ko being R. Therefore, S,(Q) + S,(Q) is 
exactly equal to the structure factor of Li.F. 

An R point k is located at half the distance of a r point G ( k  = G / 2 )  whose indices 
are all odd. Then, Z(k) is usually larger than Z(G) because If1 (=1G1/2) < 161. 

We show ST(Q) with T = X2 and M2 in figure 3. They have intensities on twofold 
axes but not on other symmetry axes. Only three of the 15 stars of X, (or M2) have 
intensities on the plane shown in figure 3(a) (or 3(b)) .  Note that the sum of S,(Q) 
over T = r, R, X2 and M2 yields the structure factor of the sublattice Li,I of Li,p; the 
special points of these types are on even levels. 

We will not show ST(Q) for other types of special points. We mention only that it 
has intensities on the three- (or five-) fold axes if T = X, and M3 (or X5 and MJ. The 
sum of ST(Q) over all types of special points is equal to S ( Q / 2 ) ,  which is the structure 
factor of 2L,,p. 

5. The plane-wave states (Bloch sums) of the icosahedral quasi-lattice 

We shall take a finite (but macroscopic) block of an IQL composed of N lattice sites 
and number the lattice sites arbitrarily. We will investigate the electronic structure of 
the block, which we shall denote by the same symbol Lj as that for the infinite 
lattice. We employ the tight-binding approximation with a single s orbital per site. A 
normalised orbital localised on the nth site is denoted by In). We shall neglect non- 
orthogonality between different orbitals. 
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A normalised Bloch sum with wavevector k is given by 
. N  

where R,  stands for the nth lattice vector. Hereafter, we shall refer to this state as a 
plane wave. 

Let ko be a representative wavevector of type-T special points. Then, another 
plane-wave-like state is defined by 

The state is determined independently of the particular choice of the representative. 
This state is nothing but a ‘cut’ of a 6~ Bloch sum because ~ ( k , ;  R, )  = exp[i(ko R ,  + 

We shall write IT; k,) simply as ir) or /R) if T = r or R, respectively. All the 
nearest-neighbour pairs in Li are bonding in /r) (or antibonding in IR)) irrespective of 
the direction of the bonds. 

In a case where T # r, R, IT; k,) has both bonding and antibonding bonds. More 
exactly, a bond is bonding or antibonding if the relevant index in k,  = (h, . , , h6) to 
the direction of the bond is an integer or half-integer, respectively. Accordingly, the 
direction of an antibonding bond can take values 2A(ko) of the 12 possible directions. 
If a spherical coordinate system is introduced consistently with the main axis (or axes) 
of the point group %(ko),  the antibonding (or bonding) bonds have high (or low) 
latitudes for the X-type special points, but the situation is converse for M-type ones. 

Using equations (l), (2), (5) and (6) together with the assumption that N 9 1, we 
can show that 

k, * R , ) ] .  

if k E L,T,(ko) 

otherwise. 
I(klT; k0)I2 = (8”’ (7) 

Accordingly, the weighted distribution of special points as given by S(k,; Q )  is 
considered, alternatively, to represent the distribution of the quantum probabilities 
by which IT; ko) is included in the plane waves. Note that Ik) with k E LTp(ko) is almost 
equal to IT; k,) if Z(k) = 1 or, equivalently, k = 0. 

Using equation (7) for the case of /r) (= IO)) together with the equality (klk’) = 
(k  - k’(O) ,  we obtain 

if k’ = k + G for G E L,Tp(ko) 

otherwise. 
l(klk’)I2 = 

Note here that the wavevectors are assumed to be discretised (quantised) in such a 
way that each one is given a share of the volume ( ~ K ) ~ / Q  in ET, with Q being the 
volume of the block. 

In the case of a periodic system, all the plane waves in the first Brillouin zone (or 
some irreducible zone) form an orthonormal complete set and they repeat periodically 
in the reciprocal space (the extended zone scheme). The situation is very different in 
the case of the quasi-lattice; it is impossible to choose an orthonormal complete set 
of plane waves. Nevertheless, equation (8) means that the plane waves recur quasi- 
periodically in the reciprocal space. This is very different also from the case of an 
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amorphous system, where the plane waves (Bloch sums) are ‘randomised’ in a high- 
wavenumber region on account of the diffuseness of the structure factor. 

Let ko and kl, be special points belonging to different types T and T’. Then, 
kd = kl, - ko is a special point belonging to the third type T (# r) and we obtain 
(T; ko(T’;  kl,) = (rlT; k ; )  = 0, where the second equality follows from equation (7).  
Therefore, the plane-wave-like states associated with the 64 translationally inequiv- 
alent sets of special points form an orthonormal (but incomplete) set. 

6. The electronic structure of the icosahedral quasi-crystal in the quasi-crystalline 
approximation 

We assume the following expression for the Hamiltonian matrix on the electronic 
states of the system: 

where t (> 0) is the transfer integral and the summation is restricted to bonds in the 
network associated with Li. 

Since the system has no translational symmetries, the plane-wave states are not 
exact eigenstates of H. However, it may not be a bad approximation to assume them 
to be approximate eigenstates. Such an assumption is known as the quasi-crystalline 
approximation (QCA) and is sometimes used for an amorphous system or a liquid metal 
(Roth 1973). In this section we employ it. Then, the eigenenergy for Ik) is given by 

which follows from the fact that the average coordination number is 6. This represents 
a dispersion relation. 

A wavevector k satisfying the condition ai k = JC X integer, i = 1-6, is a critical 
point (a stationary point) of EQcA(k). This condition is virtually satisfied by a special 
point ko such that f o  = 0 (i.e. I(ko)  = 1). We shall take such a representative from 
each set of translationally equivalent special points. Then, we obtain EQcA(ko) = 
-6t + 2tA(ko). That is, we obtain EQcA(ko) = -6t, -44 -2t, 0 ,  0, 24 4t and 6t for ko 

being representatives of r, X5, X2, X3, M3, M2, Mj and R, respectively. Note that in 
the case of a periodic system, a special point is always a critical point of the dispersion 
relation because it is an isolated point with a higher symmetry than those of neigh- 
bouring points. 

We consider next the behaviour of EQcA(k) in the neighbourhood of a special point 
ko. We expand EQcA(ko + k )  to the second order in k as 

where si takes value 1 or -1  depending on whether hi in ko = (h ,  . . . h6) is an integer 
or a half-integer, respectively. The second term in equation (11) is equal to tu2k2 (or 
-tu2k2) for r (or R), respectively, so that r (or R) is an MO- (or M3-) type critical 
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point of EQcA(k). We can conclude by a similar calculation that an X- (or M-) type 
special point is an MI- (or M2-) type critical point. 

Before closing this section, we remark on the symmetry of the Hamiltonian matrix 
H. It connects sites in the sublattice L;.F of L, only with those in the other one, 
LJ,F, and vice versa. Then, PHP = - H ,  where P with P2 = 1 is a diagonal matrix that 
inverts the signs of the amplitudes associated with the sites in L;,F only. Therefore, 
the density of states has a line of mirror symmetry at E = 0. Moreover, since P l r )  = 
IR), the electronic structure in reciprocal space is symmetric against interchange of r 

and R (and between X, and M,, r = 2, 3 and 5 )  provided that the sign of the energy 
is inverted simultaneously. For example, EQcA(k) = -EQcA(ko + k )  with ko being R. 
These results are similar to those of the case of the simple cubic lattice. 

7. A numerical investigation of the wavefunctions in the reciprocal space 

We investigate numerically the eigenstates of H.  We have to treat a finite sample of 
size N - lo3 sites on account of the limitation of the computer. Then, the boundary 
condition is important. In order to suppress surface effects, we adopt the periodic 
boundary condition (PBC). Though the PBC cannot strictly be reconciled with the quasi- 
periodicity of the IQL, it can be done approximately by a minor modification of the 
IQL (Elser and Henley 1985): by approximating the golden ratio, t = (1 + d5) /2 ,  with 
a series of its rational approximants, we obtain a series of ‘periodic’ IQL of size 32, 
136, 576, 2440, 10336, , , ., which have cubic unit cells. We have used a sample of 
size 2440. Note that the wavevectors of the plane-wave states are quantised by the 
PBC as (2~7dlL) (II ,  12, 13) where L stands for the linear dimension of the cell and li are 
integers. 

Let E,, i = 0 ,  1, . . . , N - 1, be the eigenenergies of H and V i  the corresponding 
normalised eigenvectors. Then, the probability of the plane-wave state Ik) to have 
energy E, is given by P(Ei, k )  = l(qilk)I2. The probabilities of all the eigenstates sum 
to 1. We can represent P(E,, k )  as a two-dimensional map in the E-k plane if k is 
restricted on an axis in reciprocal space; the magnitude of P(E;,  k )  is represented by 
a circle whose area is proportional to P(E,, k ) .  

We show in figure 4 such a map in the case where the axis in reciprocal space 
coincides with a twofold axis. The pattern has mirror symmetry with respect to the 
vertical axis and the left half is not shown. We can clearly observe a parabolic dispersion 
relation in the neighbourhood of the origin. As the wavenumber is increased, it 
recurs with different intensities at other r points (A-D in figure 3(a)); the intensities 
agree well with the intensities of the r points in figure 3 (or figure 1). 

The ground-state energy is Eo = -6.6t. This is a reasonable result because of the 
variational inequality, Eo = ( I ) ~ / H / ~ ~ )  s (rlHlr) = -6t (=EQCA(r)); the true ground 
state V,, will gain band energies by having larger amplitudes at sites with high 
coordination numbers. 

We have estimated the effective mass at the r point from the curvature of the 
dispersion relation and found that it agrees with the QCA effective mass, 
m&A = h2/(2ta2), within 2%. 

The dispersion relation is diffused at higher energies but we can clearly observe 
the three dispersion maxima at the level E = 2.1t. The abscissae (the wavenumbers) 
and the intensities of the maxima are well accounted for by ascribing them to the M2 
points as given in figure 3(b). Though the level energy is not determined sharply, it 
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Figure 4. The map of the Fourier intensities of the wavefunctions along a twofold axis in the 
reciprocal space. The area of a circle is proportional to the intensity. A component with an 
intensity lower than 0.005 is ignored. Note that heavy overlappings among different inten- 
sities occur. The wavenumber is quantised to a multiple of 2n/L, with L (=11.66a) being 
the linear dimension of the cubic cell. The abscissa is cut off at 55 units ( 2 5  X 

(2x1~)) .  The energy is scaled in units oft. 

agrees well with EQCA(MZ) (=2t). We will sometimes call the dispersion-relation-like 
pattern in the map of P(Ei,  k) a quasi-dispersion relation. 

The map in figure 4 is complicated in -3.3t 6 E S 0. However, if we inspect it 
closely, we can observe that a sharp maximum with E = - 2 . l t  is present in the 
dispersion between the second r point (A in figure 3(a)) and the third one (B); it is 
obscured partly on account of a large quantisation effect of the wavenumber because 
L (=11.66a) is not sufficiently large compared with a. A similar maximum can be seen 
between C and D. These maxima can be ascribed to X2 points as given in figure 3(a). 
The QCA effective mass at the representative X2 point is negative along the horizontal 
axis but has the same magnitude as the one at the r point. Note that the X2 point on 
the left of the second point (A) and the one on the right of the fourth (D) are not 
translationally equivalent to the previous two X2 points. 

We show in figure 5 a map along the axis represented by the broken line in figure 
2. There exist five dispersion maxima originating from the R points and, also, three 
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Figure 5. A similar map to figure 4 but along the broken line in figure 2, on which R points 
are located. The abscissa represents the component of the wavevector parallel to the 
horizontal axis in figure 2. 

minima from X2 points. The intensities of these critical points are in good agreement 
with those of R points in figure 2 and X2 points in figure 3(a). If figure 5 is rotated by 
180" around the centre of the box, a similar pattern to figure 4 is obtained, which is a 
consequence of the previously mentioned symmetry of H. The symmetry would be 
more perfect if figure 4 were compared with a map along the horizontal axis passing 
through the strongest R point on the fivefold axis in figure 2. 

We have investigated similar maps along several other axes and confirmed that 
critical points of the quasi-dispersion relation also appear at Xs, Ms, X3 and M3 with 
appropriate intensities and energies. 

8. Summary and discussion 

We have shown that there exist several types of special points in the reciprocal 
space of the IQL. The translationally equivalent special points are distributed quasi- 
periodically in the reciprocal space with different intensities. On the other hand, the 
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Fourier spectra of electronic wavefunctions on the IQL are investigated in the tight- 
binding approximation. We have observed a quasi-dispersion relation in two-dimen- 
sional maps of the spectra along several axes in the reciprocal space. The positions of 
the critical points of the quasi-dispersion relation and their intensities are well 
accounted for by the weighted distributions of different types of special points in the 
reciprocal space. 

We have calculated the density of states of H ,  which is, however, not presented 
here because it deteriorates on account of the size effect (a similar deterioration occurs 
for the density of states of the simple cubic lattice of a similar size). Nevertheless, we 
can observe several structures that appear to be bulk effects due to the critical points 
of the quasi-dispersion relation. We are now undertaking a calculation for the sample 
of size N = 10336, in order to confirm this observation. 

We have investigated the energy dependence of P(Ei, k )  for several fixed wavevec- 
tors. The profiles in the E versus P plane indicate that the spectra are singular 
continuous but not of point spectra nor absolutely continuous; this is partly evidenced 
by the fact that heavy overlappings among different intensities are observed in figures 
4 and 5. This observation indicates that the wavefunctions are critical with respect to 
localisation as in the case of the Fibonacci lattice (and, probably, the case of the 
Penrose lattice). 

If the spectra were of point spectra, the quasi-dispersion relation would be as sharp 
as the case of a crystal (this is the case of the Harper model in the extended regime 
(Aubry and AndrC 1979, Sokoloff 1985); the model is a ID quasi-periodic system). On 
the other hand, absolutely continuous spectra are realised in the case of a disordered 
system and also the localised regime of the Harper model. If the conjecture that the 
electronic wavefunctions on the IQL are critical is true, the localisation property of a 
quasi-lattice is not sensitive to its dimensionality, in contrast to the case of a disordered 
system (Abrahams et a1 1979). This subject will be discussed in the near future based 
on a more extensive calculation with larger samples. 

We have investigated the electronic wavefunctions of the Penrose lattice by Fourier 
decompositions of them and obtained similar results to the case of the IQL. The results 
will be published elsewhere. 

Special points are defined also for other icosahedral quasi-lattices belonging to 
different Bravais classes (Rokhsar et a1 1987) and also for two-dimensional quasi- 
lattices (see, for example, Niizeki 1989a). A complete classification of the special 
points in these cases is published in Niizeki (1989b, c). 
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